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Abstract
We study the average separation between an elastic solid and a hard solid, with a nominally flat
but randomly rough surface, as a function of the squeezing pressure. We present experimental
results for a silicon rubber (PDMS) block with a flat surface squeezed against an asphalt road
surface. The theory shows that an effective repulsive pressure acts between the surfaces of the
form p ∼ exp(−u/u0), where u is the average separation between the surfaces and u0 a
constant of the order of the root-mean-square roughness, in good agreement with the
experimental results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Contact mechanics between solid surfaces is the basis for
understanding many tribology processes [1–7] such as friction,
adhesion, wear, and sealing. The two most important
properties in contact mechanics are the area of real contact and
the interfacial separation between the solid surfaces. For non-
adhesive contact and small squeezing pressure, the (projected)
contact area depends linearly on the squeezing pressure [8–11].

When two elastic solids with rough surfaces are squeezed
together, the solids will in general not make contact
everywhere in the apparent contact area, but only at a
distribution of asperity contact spots. The separation u(x)

between the surfaces will vary in a nearly random way with
the lateral coordinates x = (x, y) in the apparent contact
area. When the applied squeezing pressure increases, the
average surface separation u = 〈u(x)〉 will decrease, but in
most situations it is not possible to squeeze the solids into
perfect contact corresponding to u = 0. We have recently
developed a theory which predicts that, for randomly rough
surfaces at low squeezing pressures, p ∼ exp(−u/u0), where
the reference length u0 depends on the nature of the surface
roughness but is independent of p [1, 12]. Here we will present
experimental results to test the theoretical predictions1. We
study the squeezing of a rubber block against an asphalt road

1 Experiments involving the squeezing of rubber blocks against rough
surfaces have been performed by Gäbel and Kröger [13] but without comparing
the experimental results to theory.

surface. This topic is also important in the context of the air-
pumping contribution to tire noise [14]. Thus the compression
and outward flow of the air between a tread block and the
road surface cavities during driving contribute to tire noise,
similarly to how sound is generated during applause. A similar
effect (but now involving decompression and inward flow of
air) occurs when a tread block leaves the tire–road contact area.

2. Theory

We consider the frictionless contact between an elastic solid
(elastic modulus E and Poisson ratio ν) with a flat surface and
a rigid, randomly rough surface with the surface height profile
z = h(x). The separation between the average surface plane
of the block and the average surface plane of the substrate
(see figure 1) is denoted by u with u � 0. When the
applied squeezing force p increases, the separation between
the surfaces at the interface will decrease, and we can consider
p = p(u) as a function of u. The elastic energy Uel(u) stored
in the substrate asperity–elastic block contact regions must be
equal to the work done by the external pressure p in displacing
the lower surface of the block towards the substrate. Thus,

p(u) = − 1

A0

dUel

du
, (1)

where A0 is the nominal contact area. For elastic solids
equation (1) is exact [12, 15]. The equation holds also for
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Figure 1. An elastic block squeezed against a rigid rough substrate.
The separation between the average plane of the substrate and the
average plane of the lower surface of the block is denoted by u.
Elastic energy is stored in the block in the vicinity of the asperity
contact regions.

viscoelastic solids if the compression occurs so slowly that
negligible energy dissipation (caused by the internal friction of
the solids) occurs during the compression. In our experiments
we use silicon rubber which behaves as a perfect elastic solid
under our experimental conditions.

Theory shows that for low squeezing pressure, the area
of real contact A varies linearly with the squeezing force
p A0, and that the interfacial stress distribution and the size
distribution of contact spots are independent of the squeezing
pressure [16]. That is, with increasing p existing contact
areas grow and new contact areas form in such a way
that in the thermodynamic limit (infinite-sized system) the
quantities referred to above remain unchanged. It follows
immediately that for small load the elastic energy stored in
the asperity contact region will increase linearly with the load,
i.e. Uel(u) = u0 A0 p(u), where u0 is a characteristic length
which depends on the surface roughness (see below) but is
independent of the squeezing pressure p. Thus, for small
pressures (1) takes the form

p(u) = −u0
dp

du

or2

p(u) ∼ e−u/u0 . (2)

To quantitatively derive the relation p(u) we need
an analytical expression for the asperity induced elastic
energy. Within the contact mechanics approach of Persson we
have [16, 18, 19]

Uel ≈ A0 E∗ π

2

∫ q1

q0

dq q2 P(q, p)C(q), (3)

where E∗ = E/(1 − ν2) and where P(q, p) = A(ζ )/A0

is the relative contact area when the interface is studied at
the magnification ζ = q/q0, which depends on the applied

2 We note that the result (2) differs drastically from the prediction of asperity
contact mechanics theories such as those of Bush et al [17] and the theory of
Greenwood and Williamson [17].

Figure 2. A rubber block between two flat and rigid solid plates.
(a) Undeformed state. (b) Squeezed block assuming no slip (i.e. high
enough static friction) at the rubber–plate interfaces. (c) Squeezed
block assuming perfect slip (i.e. no friction) at the rubber–plate
interfaces.

pressure p. The surface roughness power spectrum [16]

C(q) = 1

(2π)2

∫
d2x 〈h(x)h(0)〉e−iq·x,

where 〈· · ·〉 stands for ensemble average. Note that for
complete contact P = 1 and in this limit (3) is exact.
For self-affine fractal surfaces the prediction of the contact
mechanics theory of Persson has been compared to numerical
simulations [19, 20]. The numerical studies indicate that
as the fractal dimension of the surface approaches 2 the
Persson theory may become exact, while a small difference
between theory and simulations is observed for larger fractal
dimensions [21]. Below we will compare the theoretical
predictions with experimental data for an asphalt road surface
which is fractal-like with the fractal dimension Df ≈ 2. We
find nearly perfect agreement between theory and experiment
(see below), supporting the picture gained before based on
numerical simulations.

Substituting (3) in (1) gives for small squeezing
pressures [12]:

p = β E∗e−u/u0 . (4)

For self-affine fractal surfaces, the length u0 and the parameter
β depend on the Hurst exponent H and on q0 and q1. Most
surfaces which are self-affine fractal have the Hurst exponent
H > 0.5 (or the fractal dimension Df < 2.5). For such
surfaces u0 and β are nearly independent of the highest
surface roughness wavevector, q1, included in the analysis.
For the substrate surface studied below we obtain from the
measured surface roughness power spectrum (see figure 7)
u0 = 0.30 mm and β = 0.59. Note that u0 is of the order of
the root-mean-square roughness amplitude (hrms ≈ 0.29 mm
in the present case, see below).

Consider a rubber block (elastic modulus E) with a flat
surface (area A0) and thickness d . We will study both dry
and lubricated interfaces (see figure 2) resulting in no slip
and perfect slip at the two rubber-confining wall interfaces. If
the block is squeezed against a rigid, randomly rough counter
surface, the upper surface of the rubber block will move
downwards by the distance s (see figure 3), which is the sum
of a uniform compression of the rubber block, dσ/E , and a
movement (or penetration) w of the average position of the
lower surface of the rubber block into the valleys or cavities
of the countersurface:

s = w + dσ/E . (5)

2
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Figure 3. A rubber block in contact with a rigid, randomly rough
substrate. Left: no applied load. Right: the rubber block is squeezed
against the substrate with force F . The upper and (the average
position of) the lower surface of the rubber block moves downwards
by the distances s and w, respectively. We assume perfect interfacial
slip (no friction).

If u denote the average separation between the block and the
substrate (so that u = 0 corresponds to perfect contact) then

w = hmax − u (6)

where we have assumed that the initial position of the lower
surface of the block corresponds to the separation where the
block just makes contact with the highest substrate asperity (as
in figure 3, left), which is located a distance hmax above the
average substrate surface plane. Using (4) we get

log(σ/E) = log(4β/3) − u/u0 (7)

where σ = F/A0 the squeezing pressure. Here we have
used E∗/E = 1/(1 − ν2) ≈ 4/3 since for rubber ν ≈ 1/2.
Combining (5) and (6) gives

u = hmax − s + dσ/E .

Substituting this in (7) gives

log
( σ

E

)
= log

(
4β

3

)
− 1

u0

(
hmax − s + d

σ

E

)

or

log
( σ

E

)
= B + 1

u0

(
s − d

σ

E

)
(8)

where B = log(4β/3) − hmax/u0.
For the no-slip boundary condition, equation (5) is

replaced by
s = w + dσ/E ′

where the effective modulus E ′ > E . Thus, in this case (8)
takes the form

log
( σ

E ′
)

= B ′ + 1

u0

(
s − d

σ

E ′
)

(9)

where B ′ = log(4β E/3E ′) − hmax/u0.

3. Experimental details

To test the theory presented above, we have performed the
experiment indicated in figure 3. A rubber block with a flat
surface was squeezed against an asphalt road surface. The
displacement s of the upper surface of the rubber block was
changed in steps of 0.05 mm, and the force F was measured.
For the experiment we used a test stand produced by SAUTER

GmbH (Albstadt, Germany), normally used to measure spring
constants. Using this test stand, we were able to measure forces
up to 500 N, and displacement with a resolution of 0.01 mm.

The rubber block was made from a silicone elastomer
(PDMS). The PDMS samples were prepared using a
two-component kit (Sylgard 184) purchased from Dow
Corning (Midland, MI). This kit consists of a base
(vinyl-terminated polydimethylsiloxane) and a curing agent
(methylhydrosiloxane–dimethylsiloxane copolymer) with a
suitable catalyst. From these two components we prepared a
mixture 10:1 (base/cross linker) in weight. The mixture was
degassed to remove the trapped air induced by stirring from the
mixing process and then poured into cylindrical casts (diameter
D = 3 cm and height d = 1 cm). The bottom of these casts
was made from glass to obtain smooth surfaces (negligible
roughness). The samples were cured in an oven at 80 ◦C for
over 12 h.

The road surface used in this experiment was provided
by Pirelli (Italian tire manufacturer). The topography was
measured with contact-less optical methods using a chromatic
sensor with two different optics produced by Fries Research
and Technology GmbH (Bergisch Gladbach, Germany). To
identify the elastic modulus E , the PDMS sample was first
squeezed against a smooth substrate in a compression test.
We measured the force F over the displacement s for two
different cases. First there was no lubrication used and
the PDMS sample deformed laterally at the force-free area,
as shown in figure 2(b), because no slip occurred at the
contact areas. Second we lubricated the contact areas to
obtain perfect slip at the interfaces (see figure 2(c)). We
used polyfluoroalkylsiloxane (PFAS), a fluorinated silicone oil
supplied by ABCR GmbH & Co. KG (Karlsruhe, Germany).
Because of its high viscosity (η = 1000 cSt), the fluid is an
excellent lubricant also under extreme pressure applications
and should therefore not easily be squeezed out of the contact
area. Also it does not react (or interdiffuse) with the PDMS
elastomer.

4. Results

Consider first flat surfaces. In figure 4 we show the measured
relation between the stress and the strain for lubricated surfaces
(so that the shear stress vanish on the boundaries). If the stress
is normalized with E = 2.3 MPa, a nearly straight line with
slope 1 will result, so that the relation σ = Es/d holds. The
elastic modulus E = 2.3 MPa is consistent with the elastic
modulus reported in the literature for similar silicon rubbers3.
We note that when repeating this experiment (figure 4), as
well as the other similar experiments described below, the new
results never differed by more than ∼2.5% from the original
measurements.

We have also performed experiments for dry surfaces.
In this case no (or negligible) slip occurred at the interface
with the confining walls, and visual inspection of the system

3 See, e.g. Bongaerts et al [22], where they report a Young’s modulus E =
2.4 MPa for PDMS prepared in the same way as ours, using Sylgard 184 with
a base/curing agent mass ratio of 10:1. Similarly, Scheibert et al [22] obtained
the Young’s modulus 2.2 ± 0.1 MPa.
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Figure 4. The stress σ (in units of the elastic modulus E) as a
function of the strain s/d , where s is the displacement of the upper
surface and d the thickness of the block. In the calculation we used
E = 2.3 MPa for a PDMS rubber block confined between two
smooth lubricated (wet) surfaces.

Figure 5. The stress σ (in units of the elastic modulus E ′) as a
function of the strain s/d , where s is the displacement of the upper
surface and d the thickness of the block. In the calculation we used
the effective modulus E ′ = 4.2 MPa for a PDMS rubber block
confined between smooth dry surfaces. The two experimental curves
correspond to increasing and decreasing strain.

showed that the rubber bulged laterally at the force-free area
(see figure 2(b)). We still expect a linear (or near linear)
relation between stress and strain but the effective elastic
modulus E ′ is larger than for lubricated interfaces. Thus, the
effective elastic modulus deduced from the experimental data
(see figure 5) E ′ ≈ 4.2 MPa is about 80% larger than for
the lubricated interface. To check the measuring system for
hysteresis effects, some of the experiments were performed
bidirectionally. The results are shown in figure 5 where the
strain was increased and after that slowly decreased again.
Negligible hysteresis occurred, as expected because of the low
glass transition temperature of PDMS.

The increase in the effective elastic modulus in
compression, from 2.3 to 4.2 MPa, when going from slip to
no-slip boundary conditions, is consistent with the prediction

Figure 6. The stress σ (in units of the elastic modulus E ′) as a
function of the strain s/d , where s is the displacement of the upper
surface and d the thickness of the block. In the calculation we used
the effective modulus E ′ = 2.9 MPa. For a PDMS rubber block
confined between one lubricated (wet) surface and one dry surface.

of the Lindley equation [23], which in the present case takes
the form

E ′ ≈ E
(
1 + 1.4S2

)

For a cylinder, the shape factor S = R/2d . In the present case
E = 2.3 MPa and S = 0.75 giving E ′ = 4.1 MPa which
agrees very well with the measured value (4.2 MPa).

We have also studied the case where one surface is
lubricated and the other dry. In this case the rubber will
displace laterally in an asymmetric way (as in figure 10(b))
and the measured effective elastic modulus E ′ = 2.9 MPa (see
figure 6), is slightly smaller than the average of the effective E-
modulus obtained assuming no slip and complete slip on both
surfaces: (2.3 + 4.2)/2 MPa ≈ 3.3 MPa.

We will now present experimental results for a rubber
block squeezed against an asphalt road surface. The surface
roughness power spectrum of the road surface is shown in
figure 7. The surface has the root-mean-square roughness
hrms ≈ 0.29 mm, and for the wavevector q > q0 ≈
2500 m−1 it is (on a log–log scale) well approximated by a
straight line with the slope corresponding to a self-affine fractal
surface with the fractal dimension Df = 2. For q < q0,
C(q) is approximately constant; we refer to q0 as the roll-off
wavevector.

In figure 8 we show the natural logarithm of the squeezing
pressure (divided by the effective elastic modulus) as a function
of s − dσ/E ′, where s is the displacement of the upper surface
of the rubber block relative to the substrate, and where d is the
thickness of the rubber block. In the calculation we used the
effective elastic modulus E ′ = 4.8 MPa and B ′ = −6.85. The
value of B ′ has been calculated using (9) (using the measured
hmax) so that the only fitting parameter is the effective elastic
modulus E ′, which, however, agrees rather well with the
measurements for flat surfaces (E ′ = 4.2 MPa).

In figure 9 we show the same as in figure 8 but now for
lubricated surfaces. In the calculation we used the effective
elastic modulus E ′ = 3.4 MPa and B ′ = −6.50. Note that

4
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Figure 7. The surface roughness power spectrum C , as a function of
the wavevector q (log–log scale), for an asphalt road surface. The
straight green line has the slope −4, corresponding to the Hurst
exponent H = 1 (fractal dimension Df = 2).

Figure 8. The natural logarithm of the squeezing pressure (divided
by the effective elastic modulus) as a function of s − dσ/E ′, where s
is the displacement of the upper surface of the rubber block relative
to the substrate, and where d is the thickness of the rubber block. In
the calculation we used the effective elastic modulus E ′ = 4.8 MPa
and B ′ = −6.85. The two experimental curves were obtained using
two different silicon rubber blocks, produced in the same way. The
results are for dry contact.

this value for B ′ is slightly smaller than for dry contacts. The
difference �B ′ = −6.50 − (−6.85) = 0.35 just reflects the
difference in the effective E-modulus since according to (9)
�B ′ = log[E ′(dry)/E ′(lubricated)] = log(4.8/3.4) ≈ 0.35.
The E ′ value is larger than the E-modulus measured for flat
lubricated surfaces (E = 2.3 MPa), but this can be understood
as follows.

Visual inspection of the contact between the rubber
cylinder and the two confining walls shows that, as expected
from above, the rubber block slips against the top (flat) steel
surface, while no slip (or only very limited slip) occurs against
the rough substrate surface, see figure 10(b). This is consistent
with the fact that the observed elastic modulus is larger than
E = 2.3 MPa, as obtained above when complete slip occurs

Figure 9. The natural logarithm of the squeezing pressure (divided
by the effective elastic modulus) as a function of s − dσ/E ′, where s
is the displacement of the upper surface of the rubber block relative
to the substrate, and where d is the thickness of the rubber block.
The results are for lubricated (wet) contact. In the calculation we
used the effective elastic modulus E ′ = 3.4 MPa and B ′ = −6.5.

Figure 10. A rubber block squeezed between a rigid solid plate and a
rigid randomly rough substrate: (a) dry surfaces and (b) lubricated
surfaces.

at both (lubricated) surfaces. In fact, the observed effective
E-modulus (3.4 MPa) is quite close to the value 2.9 MPa
measured for smooth surfaces when slip occurs at one surface
and no slip at the other surface. The fact that no (or very small)
slip occurs at the interface between the rubber and the rough
substrate surface may be due to at least two facts.

(1) The pressures in the asperity contact regions are much
higher than the average pressure, and the asperity contact
regions much smaller than the nominal contact area,
resulting in much faster squeeze out of the lubricant oil
from the asperity contact regions, as compared to the case
of flat surfaces, and consequently to higher friction in the
contact regions.

(2) The substrate surface roughness on different length scales
contributes to the friction during slip because of the
viscoelastic deformations of the rubber on different length
scales. However, since for silicon rubber viscoelastic
dissipation only occurs at very high frequencies, it is likely
that this effect is small in the present case.

The measured E ′-values for rough surfaces (4.8 and
3.4 MPa) are roughly 14% larger than for smooth surfaces (4.2
and 2.9 MPa), as obtained assuming no slip on the confining

5
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surfaces in one case, and slip on only one of the confining
surfaces in the other case. The origin of this (small) difference
in effective elastic modulus is not known to us.

Finally, we note that for s − dσ/E ′ < 0.6 mm the
experimental curve in figure 9 drops off faster with decreasing
interfacial separation than predicted by the theory. (The same
effect can also be seen in figure 8 and has also been observed
in molecular dynamics calculations [15].) This is a finite size
effect: the theory is for an infinite system which has (arbitrary
many) arbitrary high asperities, and contact between the two
solids will occur for arbitrary large surface separation, and the
relation p ∼ exp(−u/u0) holds for arbitrary large u. On the
other hand a finite system has asperities with height below
some finite length hmax, and for u > hmax no contact occurs
between the solids and p = 0.

5. Summary and conclusion

We have presented a combined experimental–theoretical study
of the contact between a rigid solid with a randomly rough
surface and an elastic block with a flat surface. The
interfacial separation as a function of the squeezing pressure
has been derived theoretically and has been compared to
the experimental results. We find nearly perfect agreement
between theory and experimental data for an asphalt road
surface. We conclude that for non-adhesive interaction and
small applied pressure, p ∼ exp(−u/u0), where p is the
squeezing pressure and u the average interfacial separation,
and u0 a constant of the order of the root-mean-square
roughness of the combined surface profile. In addition, the
experimental results indicate that for surfaces with fractal-like
roughness profiles the Persson contact mechanics theory may
be exact for the fractal dimension Df = 2. We plan to extend
the study above to surfaces with other fractal dimensions to
test the theory in more general cases. The presented results
may be of great importance for, for example, heat transfer,
lubrication, sealing, optical interference, and tire noise related
to air-pumping.
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